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SUMMARY

In this paper, we present a macroscopic numerical model that is capable of capturing the interaction be-
tween the double-di�usive convective �eld and a localized �uid �ow on account of solutal undercooling
during non-equilibrium solidi�cation of binary alloys. The model is essentially based on a �xed-grid
enthalpy based control volume approach. In the present model, microscopic features pertaining to non-
equilibrium e�ects on account of solutal undercooling are incorporated through the formulation of a
modi�ed partition-coe�cient. The e�ective partition-coe�cient is numerically modelled by means of a
number of macroscopically observable parameters related to the solidifying domain. This feature has
made the present treatment di�erent from micro–macro modelling of alloy solidi�cation, which involves
certain parameters that may not be macroscopically resolvable. Numerical simulations are performed for
the case of two-dimensional transient solidi�cation of Pb–Sn alloys (both hypoeutectic and hypereutec-
tic) in a rectangular cavity, employing the present model. The simulation results are also compared with
the corresponding experimental results quoted in the literature, and the agreement is excellent. From
the results, it can be concluded that non-equilibrium e�ects on account of solutal undercooling result
in a more enhanced macrosegregation. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The freezing of a solid from a melt involves numerous complex physical issues, many of
which are closely associated with the �uid �ow that accompanies the phase-transition pro-
cess during solidi�cation. For instance, when an alloy solidi�es, the morphology often takes
the form of dendrites, which reject solute throughout the ‘mushy’ zone and into a di�usion
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layer ahead of the dendritic front. The melt, in turn, interacts with the mush and its di�u-
sion layer both solutally and thermally, resulting in a situation where both temperature and
solute concentration gradients play signi�cant roles. The temperature gradients arise from ex-
ternally imposed boundary conditions as well as evolution of latent heat within the mushy
region. The concentration gradients, on the other hand, are caused by the rejection of solute
at the solid=liquid interface, and transport of solute by di�usion and convection in the liquid
region. These two gradients lead to a �uid �ow on account of thermal and solutal buoy-
ancy in both mushy and liquid regions, the resulting �ow being known as double-di�usive
convection. This thermo–solutal convection may result in a composition variation over dis-
tances comparable to the size of the solidi�cation domain due to transport of rejected solute
with �uid �ow further away from the freezing boundary, the phenomenon being known as
macrosegregation.
Numerous computational studies have been undertaken to examine the inter-relationship

between double-di�usive convection and dendritic solidi�cation. The most important �nding
of these studies [1–3] is that double di�usive convection plays an important role in the
long-range transport of solute and thereby controls the �nal macrosegregation pattern. This
has given rise to a major challenge in the �eld of macroscopic modelling of solidi�cation,
by emphasizing the need for proper accounting of microscopic issues that dictate the �nal
macrosegregation behaviour through double-di�usive convection.
While reviewing literature on modelling of dendritic solidi�cation systems, a clear distinc-

tion needs to be made regarding the microscopic and macroscopic approaches. The micro-
scopic approach essentially deals with length scales of the same order as that of the dendrite
arms [4–12]. In this manuscript, we choose to highlight only some of the landmark investiga-
tions (pertaining to micro-modelling) relevant to the present context. In general, the classical
non-equilibrium freezing equation given by Scheils model [13] has been used widely for pre-
dicting microscopic solute redistribution between dendrite arms, provided di�usion in the solid
can be neglected. As an improvement to this model, Brody and Flemings [4] presented an
analytical expression to account for di�usion in the solid. The model is capable of predict-
ing �nal solute redistribution after solidi�cation and cooling to room temperature and local
fraction of solid as a function of temperature within the solidifying domain. The analysis has
been based on the assumption of negligible undercooling before nucleation of solid phases.
The above model does not conserve solute [5] and might lead to incorrect predictions when
solid-state di�usion is �nite. Clyne and Kurz [5] presented a modi�cation of the above model
for a more accurate prediction of microsegregation pro�les in binary alloys. Ohanka [6] anal-
ysed the solute distribution during solidi�cation by a pro�le method, which provided a better
estimate of microsegregation than the Brody–Flemings equation. Kobayashi [7] presented the
exact solution of the microsegregation model proposed by Brody and Flemings [4] under the
conditions of constant equilibrium partition-ratio, constant di�usion coe�cient of solute in the
solid, and parabolic growth. It can be noted here that all the above models of solidi�cation
essentially neglected solutal undercooling e�ects during the solidi�cation process.
Incorporation of solutal undercooling e�ects in solidi�cation modelling has subsequently

been initiated through ‘micro–macro modelling’ [14], where the aim has been the prediction
of microstructure using microscopic growth and nucleation models. Since these models require
cooling rate as an input, appropriate cooling rates are predicted from a macroscopic heat
transfer model. In such a micro–macro model, Rappaz [14] accounted for solutal undercooling
through a kinetic law for calculation of solid volume fraction in the latent heat release source
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terms, neglecting convection e�ects in the liquid. Nevertheless, many of the microscopic and
macro–micro models have been e�ectively used to develop fundamental understanding of
species transport mechanisms during dendritic solidi�cation of binary alloy systems.
However, very often, for prediction of large-scale features such as macrosegregation, macro-

scale models [1–3] for predicting momentum, heat and solute transport mechanisms are in-
voked. In such models, one may note that macroscopic solidi�cation events are strongly
in�uenced by microscopic phenomena, and hence consistent representation of appropriate mi-
croscopic behaviour needs to be adopted within the framework of the macroscopic model.
Although e�ects of solutal undercooling have been extensively analysed in microscopic solid-
i�cation models [15], such considerations in the context of macroscopic numerical modelling
of alloy solidi�cation have been missing. Incorporation of such e�ects may involve certain
macroscopically-irresolvable parameters (such as characteristic diameter of crystals, nucle-
ation rate, and grain radius), thus providing a challenge in their numerical implementation in
a macroscopic framework.
In the present numerical study, we attempt to devise a macroscopic mathematical model

that accounts for solutal undercooling during binary alloy solidi�cation, through a correction
of the partition-coe�cient. This approach is di�erent from the previous attempts on modelling
of solutal undercooling in a microscopic framework, as given in the literature cited above. The
modi�ed partition-coe�cient is described in terms of macroscopically resolvable parameters
pertaining to the solidifying domain. Such a modi�cation of partition-coe�cient is eventually
correlated with the double-di�usive convection �eld so that the �nal macrosegregation be-
haviour can be e�ectively predicted. As a demonstration of the numerical model developed in
this study, we simulate the directional solidi�cation of Pb–Sn alloys in a rectangular cavity,
corresponding to both hypoeutectic and hypereutectic initial composition of the alloy. The se-
lection of the corresponding initial alloy compositions is made in such a way that they result
in two distinct types of thermo–solutal convection patterns. This double-di�usive �ow-�eld,
in turn, is expected to control the species redistribution throughout the solidifying domain,
where solute build-up ahead of the phase-changing front (i.e. solutal undercooling) is likely
to become signi�cant. The numerical predictions regarding the same are then compared with
the macrosegregation patterns obtained from corresponding experimental work reported in the
literature [16]. We compare the experimental results with the numerical predictions with and
without the solutal undercooling model. Such a comparison is expected to reveal the impor-
tance of incorporation of solutal undercooling in numerical schemes, in terms of accurate
prediction of the �nal macrosegregation pattern.

2. MATHEMATICAL MODELLING

2.1. The physical problem

The present work investigates the solidi�cation of a binary alloy in a rectangular domain,
with the vertical boundaries subjected to prescribed temperature conditions, and the horizontal
boundaries kept insulated. The melt, with an initial superheat, is poured into the cavity, where
it starts solidifying from a vertical boundary. The problem domain is shown schematically in
Figure (1), depicting the initial and boundary conditions.
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Figure 1. Problem domain with initial and boundary conditions.

2.2. The conservation equations

By employing a single-domain continuum formulation with appropriate volume averaging of
individual phase equations, macroscopic conservation equations for mass, momentum, energy
and species conservation can be written. The details of the formulation can be found in Voller
et al. [3], and are not discussed here in detail for the purpose of brevity.

Continuity:
@
@t
(�) +∇ · (�ũ) = 0 (1)

x-momentum:
@
@t
(�u) +∇ · (�ũu) =∇ ·

(
�l
�
�l

∇u
)
− @p
@x
+ Su (2)

y(vertical)-momentum:
@
@t
(�v) +∇ · (�ũv) =∇ ·

(
�l
�
�l

∇v
)
− @p
@y
+ Sv + Sb (3)

where

Sb=�refg[�T(T − Tref ) + �S(Cl − Cref )] (3a)

Consistent with the physics of dendritic growth, the source terms Su and Sv are evaluated
from Darcy’s model of viscous �ow through a porous medium (assuming zero velocity of
solid phase and isotropic permeability) as

Si =− �l�uiK�l
(4)

where ui represents the speed in appropriate direction and K is a porosity constant. For
appropriate modelling of the above term, K has to be properly prescribed as a function of
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liquid fraction. For that purpose, the Carman–Kozeny relation is used within a range of validity
of 0¡gl¡0:5; i.e.

K =K0
g3l

(1− gl)2 (5)

However, due to inaccuracy of this equation for gl¿0:5, a hybrid model is used for that
region [17] as given by

�l = �0l

(
A�

A� − Fgs

)2
(6)

K =GK0

[
g3l

(1− gl)2
]

where A�=0:4 (7)

Here, F and G are according to the theory of rheology of suspensions reducing the e�ects of
excessive damping action of the Darcy-force as

F =0:5− 1
�
arctan[100(gcrl − gl)] (8)

G=0:5 +
1
�
arctan[100(gcrl − gl)]−4 where gcrl = 0:5 (9)

In the above equations, gcrl can be considered as a critical liquid fraction upto which the
Carman–Kozeny equation remains valid.
Energy conservation:

@
@t
(�T ) +∇ · (�ũT )=∇ · {(gs�s + gl�l)∇T} − 1

c

[
@
@t
(�gl�H) +∇ (�ũ�H)

]
(10)

where �k = kTk=ck , and �H is the latent enthalpy.
Conservation of species:
The general species conservation equation can be written as

@
@t
(�Cl) +∇ · (�ũCl)=∇ · (D+∇Cl) + Sc (11)

where D+ is the mass di�usion coe�cient and Sc is the source term. This general form
assumes any special form depending on the microstructure under consideration. For non-
equilibrium solidi�cation represented by a columnar dendritic model with distinct microstruc-
ture, we have [3],

D+ =�(gsD skp + glDl) and Sc =
@
@t
[�gsCl]− kpCl @@t (�gs) (12)

The boundary conditions consistent with the above set of di�erential equations are as follows:

(a) Left wall: u=0; v=0; T =Tcold(t); @Cl=@x=0 (13)

(b) Right wall: u=0; v=0; T =Thot(t); @Cl=@x=0 (14)
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(c) Top wall: u=0; v=0; @T=@y=0; @Cl=@y=0 (15)

(d) Bottom wall: u=0; v=0; @T=@y=0; @Cl=@y=0 (16)

The initial conditions appropriate to the physical situation are:

at t=0; u=0; T =Ti; Cl =Ci; gl = 1 (17)

It can be noted here that in order to account for microscopic convection e�ects, the partition-
coe�cient (kP) appearing in Equation (12) has to be appropriately modi�ed, the numerical
modelling and physical assessment of which is the basic objective of the subsequent discussion.

2.3. Modi�cation of partition-coe�cient on account of solutal undercooling

Common to many of the macroscopic solidi�cation models using the lever rule or Scheil’s
equation [13] as the basis of microscopic solute conservation, there is an inherent assumption
of a well-mixed solute in the liquid state. However, in practice, di�usivity in the liquid is
�nite, and there is an accumulation of solute at the liquid side of the interface within a
di�usion (or solutal) boundary layer adjacent to the interface. This leads to a phenomenon
commonly known as ‘solutal undercooling’, which may be described quantitatively as the
di�erence between the interfacial and volume-averaged liquid species concentration. It can be
noted here that the ‘undercooling’ is with respect to a change in local liquidus temperature as
a result of change in species concentration in that location. However, transport in the liquid
and in the solutal boundary layer adjacent to the liquidus front is in�uenced primarily by
convection, which tends to decrease the solutal boundary layer thickness at the corresponding
interface. It can be noted here that the solutal undercooling is expected to be a function of
liquid species di�usivity, mean crystal and dendritic growth rate, mean thickness of the solutal
boundary layer, the solid volume fraction, and the interfacial area concentration representing
the interfacial geometry. Incorporation of such considerations in the macroscopic modelling is
critically important, since the nature of the compositional boundary layer along the solid=liquid
interface controls the distribution of solute in the other regions. This, in turn, determines the
double-di�usive convection �eld, leading to a �nal macrosegregation pattern.
In order to implement this e�ect of solutal undercooling, we consider the solute pro�le

(Figure 2) in the liquid for solidi�cation with convection [13]. With the boundary condition
of Cl =C∗

l at the solid–liquid interface, and Cl =C0 at the edge of the di�usion boundary
layer (for local equilibrium at the microscopic level), the solute distribution in the boundary
layer is given by [13]

C∗
l − C∗

s

C0 − C∗
s
= exp

(
R�
DL

)
(18)

where R is the rate of interface movement, � is the di�usion boundary layer thickness, and
the superscript ∗ denotes equilibrium condition.
Equation (18) can be used to de�ne an e�ective partition coe�cient, k ′p, as the ratio of

solid composition to bulk liquid composition, i.e.

k ′p =
kp

kp + (1− kp) exp(−R�=DL) (19)
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Figure 2. Formation of a di�usion boundary layer.

Such considerations in the context of crystal growth were originally made by Burton
et al. [18], to account for solutal undercooling at the dendritic tip region (or, growth front).
Equation (19) is of immense engineering use, since it relates the composition of solid forming
in crystal growth to the alloy composition and growth conditions. Incorporation of Equation
(19) into Scheil’s equation [13] gives the so-called modi�ed normal segregation equation. To
visualize the physical e�ects of Equation (19), we consider two extreme cases. The �rst case
corresponds to R�=DL�1. From Equation (19), this case reduces to k ′p→ kp. Such a condi-
tion exists when the interfacial area concentration is large and the species di�usion length is
small. Hence, solute in that region can be assumed to be well mixed in the liquid. The other
limiting case corresponds to R�=DL�1, in which case, k ′p→ 1. This is true when the phase
change occurs rapidly, solutal boundary layer is thick and=or di�usion rate is slow. All other
cases in practice are intermediates of these two extremes. The manner in which this e�ect is
numerically implemented will be described in detail in Section 3.

3. NUMERICAL MODELLING

3.1. Outline of basic steps

The basic framework of the present numerical method rests on a pressure based �nite volume
method according to the SIMPLER algorithm [19]. Accordingly, the governing equations are
discretized by means of a �xed grid enthalpy based methodology. However, the algorithm is
aptly modi�ed to account for phase change considerations during non-equilibrium solidi�cation
on account of solutal undercooling. The broad steps of the numerical formulation are outlined
in the �owchart presented in Figure 3. Only the special features of the numerical modelling,
directly related with the focus of the present study will be discussed subsequently.
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Figure 3. A �owchart of the numerical algorithm.

3.2. Numerical modelling of convection correction for partition coe�cient

As mentioned in Section 2, the partition coe�cient needs to be modi�ed on account of so-
lutal undercooling according to Equation (19). However, for an e�ective implementation in a
macroscopic framework, the above expression has to be modelled in terms of macroscopically
observable parameters. To achieve that purpose, we �rst recognize that the term R�=Dl phys-
ically represents a ratio of advection to di�usion strengths associated with a phase-changing
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control volume, which can be interpreted as a local solutal Peclet number (Pe). The advection
strength, in this context, can be expressed as Rpc�V=�A, where Rpc is the phase change rate
per unit volume, �A is the solid–liquid interfacial area, and �V is the volume of the control
volume. On the other hand, the di�usion strength may be expressed as �Dl=lref , where lref is
the di�usion length scale in the liquid, characterizing mean species di�usion in the liquid ad-
joining the solid–liquid interface. The above may be combined to yield a macroscopic solutal
Peclet number as

Pemacro =
Rpclref
�sDlr

(20)

where r is the interfacial area contraction (i.e. ratio of the solid–liquid interface area to the
volume of the control volume), which characterises �rst-order geometric e�ects on interfacial
species transfer.
In a control volume approach, the phase change rate per unit volume can be calculated by

discretization of the following liquid-phase mass conservation:

@(gl�l)
@t

+∇ · (gl�l �u)=Rpc (21)

The transient term in Equation (21) is discretised using an implicit forward di�erencing
scheme. The integrated convective source term is discretized by following an upwinding for-
mulation as ∫

C:V
∇ · (�lgl �u) dV =�owout − �owin

where

�owin = gl;W max(Fw; 0)− gl;P max(−Fw; 0) + gl;S max(Fs; 0)− gl;P max(−Fs; 0);
and

�owout = gl;P max(Fe; 0)− gl;E max(−Fe; 0) + gl;P max(Fn; 0)− gl;N max(−Fn; 0) (22)

It can be noted that subscripts e, w, s, n, E, W, S, N in Equation (22) are in accordance with
the usual nomenclature of control points in the context of description of a control volume in
�nite volume procedure, as sketched in Figure (4). ‘F’ in Equation (22) denotes the mass
�ow rate across the respective face of the control volume.
The di�usion length can be appropriately scaled as the ratio of mass di�usion coe�cient

of the liquid to the local growth velocity at the interface, in the context of dendritic growth.
For such situations, macroscopic estimates of di�usion length can be made as

Dl
lref
=

|̃x t − x̃ t−�t |
�t

(23)

where x̃ represents location of the mushy-liquid interface and �t is the time-step.
Also,

r=

∑
j Ai; j∑
j�Vi; j

; ∀i ∈ (gl; i−1¿0 and gl; i+161) (24)
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Figure 4. A typical computational control volume.

where Ai; j is the area of phase changing interface pertaining to the control volume, �Vi; j the
volume of the phase-changing control volume.
With the macroscopic estimates given by the discretized Equations (20)–(24), Equation (19)

can now be conveniently utilized to obtain an e�ective partition-coe�cient which accounts
for solutal undercooling.

4. NUMERICAL RESULTS AND DISCUSSION

4.1. Model validation, selection of the solidifying system, and grid-independence study

For the purpose of validation of our numerical code, computations are �rst performed for
the solidi�cation of an aqueous ammonium chloride solution [2; 3], without incorporating any
partition-coe�cient correction. The numerical data used for this validation purpose are taken
from Voller et al. [2]. This problem has been repeatedly used in the literature as a benchmark
problem for binary alloy solidi�cation. The results (not shown here) obtained using the present
code compare excellently with those found in the literature [2; 3]. The validated code is then
utilized to simulate the solidi�cation of a Pb–Sn alloy in a rectangular enclosure (as shown
in Figure 1). This system is speci�cally chosen for the following reasons:

1. Since the ratio of solutal to thermal buoyancy e�ect (�S�Cl=�T�T ) is of the order of
10 for this system, an appreciable solutally driven convection can be expected inside the
mushy region. The interaction of this convection with the thermally driven bulk �uid
motion in the melt can result in an overall thermo–solutal (double-di�usive) convection
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Table I. Table of Thermophysical properties [6].

Thermophysical properties Sn 10 wt% Pb Pb 15 wt% Sn

Speci�c heat (c) 250 J=kg 154:6 J=kg
Thermal conductivity of solid (ks) 60 W=mK 34:97 W=mK
Thermal conductivity of liquid (kl) 30 W=mK 17:8 W=mK
Density (�) 7000 kg=m3 10100 kg=m3

Viscosity (�) 1:85× 10−3 kg=ms 2:53× 10−3 kg=ms
Liquid di�usion coe�cient (DL) 1× 10−9 m2=s 1× 10−9 m2=s
Latent heat of fusion (L) 5:9× 104 J=kg 2:47× 104 J=kg
Thermal expansion coe�cient (�T) −8:75× 10−5 K−1 −1:23× 10−4 K−1

Solutal expansion coe�cient (�S) 0.525 −0:339
Eutectic temperature (TE) 183◦C 183◦C
Eutectic concentration (mass fraction) (CE) 0.391 0.619
Equilibrium partition coe�cient (kp) 0.0656 0.31

in which solutal buoyancy e�ects in the interdendritic melt play a signi�cant role. It
may be noted that the above ratio for a typical metal analogue system (say, ammonium
chloride-water solution) is only of the order of unity, which is one order of magnitude
less in comparison to the metallic system chosen.

2. Since the chosen system is a real metal-alloy system, the present simulation is expected to
reveal various aspects of transport phenomena associated with a metallurgically relevant
solidifying system. The solidi�cation behaviour of such systems may be di�erent from
the response of metal analogs in similar situations, owing to a large di�erence in many
of the thermophysical properties between them.

3. Due to relatively lower melting points associated with the alloy system, experimental
results are abundantly available in the literature [16], with which the present simulation
results can be compared.

Numerical simulations are performed for the following two cases of initial alloy composi-
tion:
Case I: Pb–15 wt% Sn
Case II: Sn–10 wt% Pb
The relevant thermophysical properties for the two alloys are listed in Table I. The physical

data and boundary temperatures are taken in accordance with the experimental conditions
reported in Reference [16]. The variations of boundary temperatures with time are shown in
Figure (5), in accordance with Shahani et al. [16]. The size of the problem domain is taken
as 0:1 m× 0:1 m.
A comprehensive grid-independence study is undertaken to determine the appropriate spa-

tial discretization, temporal discretization and iteration convergence criteria to be used. The
quantities examined in this study are the maximum magnitudes of the various scalar variables
(horizontal and vertical velocity component, temperature, solute concentration in the liquid,
the liquid mass fraction), the interface location and its growth rate. As an outcome of this
study, we have taken a 80× 80 non-uniform grid as our �nal simulation matrix, with very
�ne grids along the x-direction near the cold wall (∼0:05 mm). Also, we have adopted a
gradually increasing time step, starting from an initial value of 0:1 s to a �nal value of 1 s for
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Figure 5. Variation of boundary temperature with time for (a) Sn 10 wt% Pb
alloy and (b) Pb wt% Sn alloy.

the later stages. Selection of such gridding and time step is primarily meant to capture the
initial transients, as the solidi�cation begins. Also, small time-steps ensure that the predictions
regarding the interface growth rates are accurate enough. However, it is found that, a �ner
grid system and time step size is unable to alter the results appreciably.
Convergence in inner iterations is declared only when the following conditions are simul-

taneously satis�ed:

(i) |(� − �old)=�max|610−4, where � stands for each variable u; v; T , and Cl at a grid
point at the current iteration level, �old represents the corresponding value at the previous
iteration level, and �max is the maximum value of the variable at the iteration level in
the entire domain.

(ii) Absolute values of the energy balance are within 0.1% of the total stored energy within
the computational domain.

4.2. Results for Case I

4.2.1. Double di�usive convection. Figure (6) shows the convection pattern for the case I
(Pb–15 wt% Sn), at time=10 min after commencement of solidi�cation. The streamlines
show the evolution of a minor vortex due to solutal buoyancy e�ects near the left bottom
corner of the cavity. The development of this minor vortex is due to solutal gradient build-up
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Figure 6. Stream function plots at time=10 min for Pb 15 wt% Sn alloy.

caused by the transportation of solute from the mush by the thermal buoyancy driven major
vortex. To illustrate these e�ects clearly, the corresponding portion of the cavity is zoomed
in Figure (7), where the counteracting e�ects in the velocity vectors can be clearly observed.
It can be noted that thermal and solutal buoyancy e�ects oppose each other for the nominal
composition of 15 wt% Sn in the alloy. As solidi�cation proceeds, Sn is rejected into the
liquid, which is lighter than the solvent (Pb) and hence tends to move up. On the other hand,
thermal buoyancy e�ects tend to push the �uid down the phase-changing interface, on account
of localized cooling e�ects due to rejection of latent heat during solidi�cation. Presence of
localized solutal convection is seen only in those portions of the cavity in which the solutal
buoyancy e�ect is strong enough to completely overcome the thermal convection. In other
locations, solutal buoyancy reduces the strength of the �ow-�eld created by thermal buoyancy.

4.2.2. E�ect of solutal undercooling on convection. Figures (8)–(10) exhibit the �nal macro-
segregation pattern at di�erent vertical sections of the cavity, whereas Figure (11) shows the
same at a horizontal location of the cavity. In each of these �gures, the results obtained by
the present model are compared with the experimental observations [16] and with the corre-
sponding numerical ones obtained without the convection–correction of partition-coe�cient.
From Figures (8)–(10), it is evident that there is a positive macrosegregation near the

top of the cavity, and a negative macrosegregation in the rest of the cavity. Here, a positive
macrosegregation implies that solute concentration is greater than that of the nominal alloy
composition (15% Sn, in this case). It may be noted here that solute is rejected into the liquid
throughout the mushy region. However, as evident from Figure (7), there is a net upward
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Figure 7. Velocity vectors at a zoomed location near the cavity bottom
at time=10 min for Pb 15 wt% Sn alloy.

Figure 8. Final macrosegregation for Pb 15 wt% Sn alloy at x=3:5 cm.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:895–917



MACROSCOPIC MODELLING OF SOLUTAL UNDERCOOLING 909

Figure 9. Final macrosegregation for Pb 15 wt% Sn alloy at x=8 cm.

Figure 10. Final macrosegregation for Pb 15 wt% Sn alloy at x=9:47 cm.
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Figure 11. Final macrosegregation for Pb 15 wt% Sn alloy at y=2 cm.

thermosolutal �ow close to the phase changing front inside the mushy region. This leads to
an accumulation of solute near the top of the cavity inside the mushy region, at the cost of
depletion of solute in the bottom portion. The composition of the �nal solidi�ed macrostructure
at any location of the cavity is determined by the instantaneous solute concentration adjacent
to the solidi�cation front during the evolution of the phase change process.
It is clearly evident from Figures (8)–(10) that results from the numerical simulation incor-

porating solutal undercooling e�ects (present model) are distinctly closer to the experimental
results, as compared to the model predictions without the inclusion of solutal undercooling ef-
fects (i.e. no correction of kp). These results imply that the present model predicts the amount
of solute segregation more accurately. This can be physically explained as follows: when
the solutal undercooling e�ects are not considered, the �uid �ow inside the mushy region
is predominantly in�uenced by the global double-di�usive convection e�ects. However, with
the present model, on account of solute build-up at the dendritic tips, there is an additional
strength of solutal convection, which can be scaled as {g(Ct − C0)Dl=RC0}0:5, where Ct is
the species concentration at the dendritic tip, C0 is the nominal alloy composition, Dl is the
di�usivity of solute in the liquid, and R is the interface speed. The basis of this expression
is the estimation of a solutal Grasho� number [20], where the characteristic distance is best
represented by Dl=R. This additional strength of solutal convection transports the solute more
e�ectively towards the top of the cavity adjacent to the phase-change front, leading to an
enhanced �nal macrosegregation, as predicted by the present model.
Figure (11) shows the variation of species composition in the horizontal direction in the

�nal macrostructure at a height of 2 cm from the bottom of the cavity. It is observed that
the variation of species composition in the horizontal direction is not very signi�cant. This is
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Figure 12. Stream function plots at time=10 min for Sn 10 wt% Pb alloy.

because convection is much weaker in the horizontal direction than in the vertical direction
in the layer adjacent to the phase changing front inside the mushy region.

4.3. Results for Case II

4.3.1. (a) Double di�usive convection. Figure (12) shows the convection mode for Case II
(Sn-10 wt% Pb), at time=10 min after solidi�cation begins. Unlike in the previous case,
no minor vortex appears. This is con�rmed by the zoomed �gure (Figure 13), showing the
velocity vectors in the same portion of the cavity as depicted by Figure (7) for the previous
case. This phenomenon can be attributed to the fact that as the heavier solute (Pb) is rejected
into the liquid upon solidi�cation, it tends to create a downward �ow on account of density
variations across the phase changing front. This �ow aids the thermal buoyancy driven �ow
originated as a result of cooling e�ect at the solidifying interface. Thus, the resultant double
di�usive �ow creates only a major unidirectional counterclockwise rotating vortex.

4.3.2. (b) E�ect of solutal undercooling on convection. Similar to Case I, we have plotted
the species composition variation at di�erent sections of the cavity, and the results are shown
in Figures (14)–(17). In this case, the solutal buoyancy aids thermal buoyancy, resulting in
a strong downward thermo-solutal convection inside the mushy region. Hence there is an
accumulation of the heavier solute (Pb) near the bottom of the cavity, at the expense of
solute depletion in the upper portion of the cavity. This explains the occurrence of positive
macrosegregation of solute near the bottom in the �nal macrostructure of the solidi�ed cavity,
as observed in the �gures. In this case, too, we �nd that the predictions from the present model
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Figure 13. Velocity vectors at a zoomed location near the cavity bottom
at time=10 min for Sn 10 wt% Pb alloy.

Figure 14. Final macrosegregation for Sn 10 wt% Pb alloy at x=3:5 cm.
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Figure 15. Final macrosegregation for Sn 10 wt% Pb alloy at x=8 cm.

Figure 16. Final macrosegregation for Sn 10 wt% Pb alloy at x=9:47 cm.
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Figure 17. Final macrosegregation for Sn 10 wt% Pb alloy at y=2 cm.

agrees with the corresponding experimental results better than the case without considering
solutal undercooling. The explanation is similar to that in Case I.

5. CONCLUSIONS

We have developed a macroscopic model for double di�usive convection during alloy solidi�-
cation, which takes into account the non-equilibrium e�ects due to solutal undercooling. Such
an e�ect arising from microscopic convection near the di�usion boundary layer adjacent to
the mushy region is captured by devising a macroscopic numerical model based on a �xed-
grid, enthalpy-based, control volume approach. In the present model, microscopic features
pertaining to solutal undercooling are incorporated through a ‘convection-correction’ of the
partition-coe�cient by means of a number of macroscopically observable parameters. This is
distinctly di�erent from the treatments in the corresponding micro–macro models in the sense
that the present model does not involve any explicit microscopic parameters, which are nor-
mally di�cult to resolve in macroscopic length scales. Numerical simulations are performed
for a two-dimensional transient solidi�cation of Pb–Sn alloys in a rectangular cavity, corre-
sponding to both hypoeutectic and hpereutectic initial composition. The simulation results are
compared with the corresponding experimental observations quoted in the literature, and an ex-
cellent agreement can be obtained. From these results, it can be concluded that non-equilibrium
e�ects on account of solutal undercooling can result in an enhanced macrosegregation.
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APPENDIX A

Nomenclature
A� A constant in the Darcy source term
Ai; j area of phase changing interface pertaining to a computational con-

trol volume
ap; a0p coe�cients in discretization equation
C species concentration
c speci�c heat
D mass di�usion coe�cient of the species
F a constant in Darcy source term=mass �ow rate across a control

volume face
G a constant in the Darcy source term
g volume fraction(when subscripted)=acceleration due to grav-

ity(when unsubscripted)
�H latent enthalpy
k thermal conductivity
kp partition coe�cient
K porosity constant
L latent heat of fusion
lref di�usion length in the liquid
p pressure
q heat �ux
Pe Peclet number
R interface speed
Rpc phase change rate per unit volume
r interfacial area concentration
S source term
T temperature
t time
�t size of the time step
u x component of velocity
v y component of velocity
ũ velocity vector
X; Y dimensions of the cavity
x; y co-ordinate variables
x̃ location of the mushy-liquid interface

Greek symbols

�S solutal expansion coe�cient
�T thermal expansion coe�cient
� di�usion boundary layer thickness
� general scalar variable
� relaxation factor
� dynamic viscosity
� density
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Subscripts

cold cold wall
E eutectic=grid point located at ‘east’ of a typical control volume
i initial
hot hot wall
L liquidus
l liquid phase
m evaluated at melting point
macro macroscopic
N grid point located at ‘north’ of a typical control volume
ref reference
S grid point located at ‘south’ of a typical control volume
s solid phase
t related to the dendritic tip
old old iteration value
W grid point located at ‘west’ of a typical control volume
0 nominal

Superscript

t corresponding to the time level ‘t’
′ modi�ed
* equilibrium
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